Стандартное отклонение в excel формула

Алан-э-Дейл       09.08.2023 г.

Содержание

Функция КОРРЕЛ для определения взаимосвязи и корреляции в Excel

КОРРЕЛ – функция, применяемая для подсчета коэффициента корреляции между 2-мя массивами. Разберем на четырех примерах все способности этой функции.

Примеры использования функции КОРРЕЛ в Excel

Первый пример. Есть табличка, в которой расписана информация об усредненных показателях заработной платы работников компании на протяжении одиннадцати лет и курсе $. Необходимо выявить связь между этими 2-умя величинами. Табличка выглядит следующим образом:

24

Алгоритм расчёта выглядит следующим образом:

25

Отображенный показатель близок к 1. Результат:

26

Определение коэффициента корреляции влияния действий на результат

Второй пример. Два претендента обратились за помощью к двум разным агентствам для реализации рекламного продвижения длительностью в пятнадцать суток. Каждые сутки проводился социальный опрос, определяющий степень поддержки каждого претендента. Любой опрошенный мог выбрать одного из двух претендентов или же выступить против всех. Необходимо определить, как сильно повлияло каждое рекламное продвижение на степень поддержки претендентов, какая компания эффективней.

27

Используя нижеприведенные формулы, рассчитаем коэффициент корреляции:

  • =КОРРЕЛ(А3:А17;В3:В17).
  • =КОРРЕЛ(А3:А17;С3:С17).

Результаты:

28

Из полученных результатов становится понятно, что степень поддержки 1-го претендента повышалась с каждыми сутками проведения рекламного продвижения, следовательно, коэффициент корреляции приближается к 1. При запуске рекламы другой претендент обладал большим числом доверия, и на протяжении 5 дней была положительная динамика. Потом степень доверия понизилась и к пятнадцатым суткам опустилась ниже изначальных показателей. Низкие показатели говорят о том, что рекламное продвижение отрицательно повлияло на поддержку. Не стоит забывать, что на показатели могли повлиять и остальные сопутствующие факторы, не рассматриваемые в табличной форме.

Анализ популярности контента по корреляции просмотров и репостов видео

Третий пример. Человек для продвижения собственных роликов на видеохостинге Ютуб применяет соцсети для рекламирования канала. Он замечает, что существует некая взаимосвязь между числом репостов в соцсетях и количеством просмотров на канале. Можно ли про помощи инструментов табличного процессора произвести прогноз будущих показателей? Необходимо выявить резонность применения уравнения линейной регрессии для прогнозирования числа просмотров видеозаписей в зависимости от количества репостов. Табличка со значениями:

29

Теперь необходимо провести определение наличия связи между 2-мя показателями по нижеприведенной формуле:

0,7;ЕСЛИ(КОРРЕЛ(A3:A8;B3:B8)>0,7;”Сильная  прямая зависимость”;”Сильная обратная зависимость”);”Слабая зависимость или ее отсутствие”)’ class=’formula’>

Если полученный коэффициент выше 0,7, то целесообразней применять функцию линейной регрессии. В рассматриваемом примере делаем:

30

Теперь производим построение графика:

31

Применяем это уравнение, чтобы определить число просматриваний при 200, 500 и 1000 репостов: =9,2937*D4-206,12. Получаем следующие результаты:

32

Функция ПРЕДСКАЗ позволяет определить число просмотров в моменте, если было проведено, к примеру, двести пятьдесят репостов. Применяем: 0,7;ПРЕДСКАЗ(D7;B3:B8;A3:A8);”Величины не взаимосвязаны”)’ class=’formula’>. Получаем следующие результаты:

33

Особенности использования функции КОРРЕЛ в Excel

Данная функция имеет нижеприведенные особенности:

  1. Не учитываются ячейки пустого типа.
  2. Не учитываются ячейки, в которых находится информация типа Boolean и Text.
  3. Двойное отрицание «–» применяется для учёта логических величин в виде чисел.
  4. Количество ячеек в исследуемых массивах обязаны совпадать, иначе будет выведено сообщение #Н/Д.

Нормальное распределение в статистике

История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию биномиального распределения еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая. У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

Формула состоит из двух математических констант:

π – число пи 3,142;

е – основание натурального логарифма 2,718;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);

σ2 – дисперсия;

ну и сама переменная x, для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии (σ2). Кратко обозначается N(m, σ2) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:

P(a ≤ X < b) = Ф(b) – Ф(a)

Как посчитать процент отклонения в Excel по двум формулам

​ выбираем пункт​ программа. Давайте узнаем,​ не преобразуемый в​ предоставленном файле, то​ возникли проблема с​ задаю размер диапазона,​ в остальные пустые​1,020408​полосы повышения и понижения​n — количество​На вкладке​настраиваемые​На вкладке​Макет​и​ изменить направление и​ уделить пару секунд​«Статистические»​ как посчитать стандартное​ числа, вызывают ошибку.​ оно того не​ использованием функции СТАНДОТКЛОН.​

Как посчитать отклонение в процентах в Excel

​ а вот как​ ячейки диапазона D2:D5.​Понятие процент отклонения подразумевает​.​ точек в каждом​Макет​, а затем выполните​Формат​и​стандартным отклонением​ стиль концов пределов​ и сообщить, помогла​. В следующем меню​ отклонение в Excel.​

​Чтобы не включать логические​ стоит — можно​Попробую описать ситуацию:​ дальше не знаю.​ Чтобы скопировать формулу​ разницу между двумя​

​В зависимости от типа​ ряду;​в группе​ указанные ниже действия:​в группе​Формат​используйте следующие формулы​ погрешностей или создать​ ли она вам,​ делаем выбор между​

​Рассчитать указанную величину в​ значения и текстовые​ сделать и вручную.​есть исходная таблица​К примеру:​ самым быстрым способом,​ числовыми значениями в​ диаграммы некоторые параметры​y — значение​Анализ​Нажмите кнопку​Текущий фрагмент​.​ для вычисления погрешности,​ собственные пределы погрешностей.​ с помощью кнопок​ значениями​ Экселе можно с​ представления чисел в​ можно использовать макрос,​ с данными по​задали, что СКО​

​ достаточно подвести курсор​ процентах. Приведем конкретный​ могут быть недоступны.​ данных ряда s​нажмите кнопку​задать значение​щелкните стрелку рядом​На вкладке​ которые отображаются на​Примечание:​ внизу страницы. Для​СТАНДОТКЛОН.В​ помощью двух специальных​ ссылку как часть​ но это будет​ живой массе птицы​ = 17 и​ мышки к маркеру​ пример: допустим одного​В этой статье описаны​ и I-й точки;​Планки погрешностей​.​ с полем​Формат​ диаграмме.​ Направление планок погрешностей зависит​ удобства также приводим​

Альтернативная формула для вычисления процента отклонения в Excel

​ функций​ вычисления, используйте функцию​ тоже неполный автомат.​ из разных хозяйств​ для текущей ячейки​ курсора клавиатуры (к​ дня с оптового​ синтаксис формулы и​n y —​

​и выберите пункт​В полях​Элементы диаграммы​в группе​Параметр​ от типа диаграммы.​ ссылку на оригинал​СТАНДОТКЛОН.Г​СТАНДОТКЛОН.В​ СТАНДОТКЛОН.​ сидел несколько часов,​ за разные года​ D34 взяли окно​ нижнему правому углу)​ склада было продано​ использование функции​ общее число значений​

​Нет​Положительное значение ошибки​, а затем выберите​Текущий фрагмент​Используемое уравнение​ Для точечных диаграмм​ (на английском языке).​в зависимости от​(по выборочной совокупности)​Функция СТАНДОТКЛОНА вычисляется по​ но к сожалению​ измерений. На втором​ для расчета СКО​

​ так, чтобы курсор​ 120 штук планшетов,​СРОТКЛ​ данных во всех​.​и​

exceltable.com>

Расчет среднего квадратичного отклонения в Microsoft Excel

Определение среднего квадратичного отклонения

​ среднее значение. Оно​ результата и прописываем​ в ту ячейку,​ абсолютно одинаков, но​Одним из основных инструментов​ База данных представляет​ нижеуказанным формулам (см.​ приведем пример.​ из дисперсии –​ случайной величины), р(x) –​ вычислить непосредственно по​ стандартное отклонение.​ указать адрес ячейки,​ из выбранного диапазона,​

​ запуском Мастера функций.​Открывается окно аргументов данной​ ряд в одном​ рассчитывается путем сложения​ в ней или​ которая была выделена​ вызвать их можно​ статистического анализа является​

Расчет в Excel

​ собой список связанных​ файл примера)​Вычислим стандартное отклонение для​ стандартное отклонение.​​ вероятность, что случайная​​ нижеуказанным формулам (см.​Дисперсия выборки (выборочная дисперсия,​​ в которой расположено​​ которые соответствуют определенному​Существует ещё третий способ​ функции. В поля​ столбце, или в​ чисел и деления​ в строке формул​ в самом начале​

Способ 1: мастер функций

  1. ​ тремя способами, о​ расчет среднего квадратичного​ данных, в котором​=КОРЕНЬ(КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1))​​ 2-х выборок: (1;​​Некоторые свойства дисперсии:​ величина примет значение​

  2. ​ файл примера)​ sample variance) характеризует разброс​​ соответствующее число.​​ условию. Например, если​​ запустить функцию «СРЗНАЧ».​​ «Число» вводятся аргументы​ одной строке. А​​ общей суммы на​​ выражение по следующему​ процедуры поиска среднего​ которых мы поговорим​ отклонения. Данный показатель​ строки данных являются​=КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/(СЧЁТ(Выборка)-1))​​ 5; 9) и​​ Var(Х+a)=Var(Х), где Х -​

  3. ​ х.​=КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1)​ значений в массиве​Поле «Диапазон усреднения» не​ эти числа больше​ Для этого, переходим​ функции. Это могут​ вот, с массивом​ их количество. Давайте​ шаблону:​ квадратичного отклонения.​ ниже.​ позволяет сделать оценку​ записями, а столбцы​​Функция КВАДРОТКЛ() вычисляет сумму​​ (1001; 1005; 1009).​

  4. ​ случайная величина, а​Если случайная величина имеет непрерывное​=(СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/ (СЧЁТ(Выборка)-1) –​ относительно среднего.​ обязательно для заполнения.​ или меньше конкретно​

Способ 2: вкладка «Формулы»

​ во вкладку «Формулы».​ быть как обычные​ ячеек, или с​​ выясним, как вычислить​​=СТАНДОТКЛОН.Г(число1(адрес_ячейки1); число2(адрес_ячейки2);…)​

  1. ​Также рассчитать значение среднеквадратичного​Выделяем на листе ячейку,​ стандартного отклонения по​​ — полями. Верхняя​​ квадратов отклонений значений​

  2. ​ В обоих случаях,​​ — константа.​​ распределение, то дисперсия вычисляется по​​ обычная формула​​Все 3 формулы математически​ Ввод в него​​ установленного значения.​​ Выделяем ячейку, в​ числа, так и​ разрозненными ячейками на​​ среднее значение набора​​или​​ отклонения можно через​​ куда будет выводиться​ выборке или по​ строка списка содержит​ от их среднего.​

  3. ​ s=4. Очевидно, что​ Var(aХ)=a2 Var(X)​ формуле:​=СУММ((Выборка -СРЗНАЧ(Выборка))^2)/ (СЧЁТ(Выборка)-1)​ эквивалентны.​ данных является обязательным​

Способ 3: ручной ввод формулы

​Для этих целей, используется​ которой будет выводиться​ адреса ячеек, где​ листе, с помощью​ чисел при помощи​=СТАНДОТКЛОН.В(число1(адрес_ячейки1); число2(адрес_ячейки2);…).​

  1. ​ вкладку​ готовый результат. Кликаем​ генеральной совокупности. Давайте​ названия всех столбцов.​ Эта функция вернет​ отношение величины стандартного​

    ​где р(x) – плотность​

    ​Из первой формулы видно,​ только при использовании​ функция «СРЗНАЧЕСЛИ». Как​

  2. ​ результат. После этого,​ эти числа расположены.​ этого способа работать​​ программы Microsoft Excel​​Всего можно записать при​

​«Формулы»​​ на кнопку​ узнаем, как использовать​

​Поле. Определяет столбец,​ тот же результат,​ отклонения к значениям​Это свойство дисперсии используется​ вероятности.​Дисперсия выборки равна 0,​ что дисперсия выборки​ ячеек с текстовым​ и функцию «СРЗНАЧ»,​ в группе инструментов​ Если вам неудобно​ нельзя.​ различными способами.​ необходимости до 255​.​«Вставить функцию»​ формулу определения среднеквадратичного​ используемый функцией. Название​ что и формула =ДИСП.Г(Выборка)*СЧЁТ(Выборка),​ массива у выборок​ в статье про​

​Для распределений, представленных в​

lumpics.ru>

Что такое стандартное отклонение?

Стандартное отклонение целого набора данных показывает, насколько данные отклоняются от среднего значения.

Например, предположим, что у вас в классе 50 студентов и их баллы на экзамене по математике. Теперь, если средний балл составляет 70, а стандартное отклонение равно 10, это означает, что большая часть баллов учащегося находится в диапазоне +/- 10 от среднего (т. Е. Большинство студентов имеет оценки от 60 до 80).

Среднее значение дает значение, которое представляет все данные, а стандартное отклонение показывает, насколько данные удалены от этого среднего.

И что это стандартное значение может рассказать нам о данных:

  • Низкое значение стандартного отклонения говорит нам о том, что большинство точек данных ближе к среднему значению набора данных (среднему значению).
  • Высокое значение стандартного отклонения говорит нам о том, что большинство точек данных далеко от среднего значения (или в наборе данных могут быть некоторые выбросы)

Стандартное отклонение обычно рассчитывается путем нахождения квадратного корня из дисперсии.

Это отклонение (также называемое дисперсией) является не чем иным, как средним квадратом отклонений от среднего. Его можно рассчитать по формуле:

  • μ — среднее
  • Σ означает «сумму»
  • Xi — значение каждого элемента в списке
  • N — количество пунктов в списке

Находите это сложным? Не беспокойтесь!

Я только что показал вам формулу, чтобы вы знали, что она означает. Вам это не нужно, когда вы пытаетесь вычислить стандартное отклонение в Google Таблицах.

В Google Таблицах есть встроенные формулы, которые позаботятся обо всем.

Итак, давайте посмотрим, как вы можете это сделать!

Расчет в Excel

Рассчитать указанную величину в Экселе можно с помощью двух специальных функций СТАНДОТКЛОН.В (по выборочной совокупности) и СТАНДОТКЛОН.Г (по генеральной совокупности). Принцип их действия абсолютно одинаков, но вызвать их можно тремя способами, о которых мы поговорим ниже.

Способ 1: мастер функций

  1. Выделяем на листе ячейку, куда будет выводиться готовый результат. Кликаем на кнопку «Вставить функцию», расположенную слева от строки функций.

В открывшемся списке ищем запись СТАНДОТКЛОН.В или СТАНДОТКЛОН.Г. В списке имеется также функция СТАНДОТКЛОН, но она оставлена из предыдущих версий Excel в целях совместимости. После того, как запись выбрана, жмем на кнопку «OK».

Результат расчета будет выведен в ту ячейку, которая была выделена в самом начале процедуры поиска среднего квадратичного отклонения.

Способ 2: вкладка «Формулы»

Также рассчитать значение среднеквадратичного отклонения можно через вкладку «Формулы».

  1. Выделяем ячейку для вывода результата и переходим во вкладку «Формулы».

После этого запускается окно аргументов. Все дальнейшие действия нужно производить так же, как и в первом варианте.

Способ 3: ручной ввод формулы

Существует также способ, при котором вообще не нужно будет вызывать окно аргументов. Для этого следует ввести формулу вручную.

  1. Выделяем ячейку для вывода результата и прописываем в ней или в строке формул выражение по следующему шаблону:

=СТАНДОТКЛОН.Г(число1(адрес_ячейки1); число2(адрес_ячейки2);…) или =СТАНДОТКЛОН.В(число1(адрес_ячейки1); число2(адрес_ячейки2);…).

Всего можно записать при необходимости до 255 аргументов.

После того, как запись сделана, нажмите на кнопку Enter на клавиатуре.

Как видим, механизм расчета среднеквадратичного отклонения в Excel очень простой. Пользователю нужно только ввести числа из совокупности или ссылки на ячейки, которые их содержат. Все расчеты выполняет сама программа. Намного сложнее осознать, что же собой представляет рассчитываемый показатель и как результаты расчета можно применить на практике. Но постижение этого уже относится больше к сфере статистики, чем к обучению работе с программным обеспечением.

Цель данной статьи показать, как математические формулы, с которыми вы можете столкнуться в книгах и статьях, разложить на элементарные функции в Excel.

В данной статье мы разберем формулы среднеквадратического отклонения и дисперсии и рассчитаем их в Excel.

Перед тем как переходить к расчету среднеквадратического отклонения и разбирать формулу, желательно разобраться в элементарных статистических показателях и обозначениях.

Рассматривая формулы моделей прогнозирования, мы встретимся со следующими показателями:

Например, у нас есть временной ряд – продажи по неделям в шт.

Для этого временного ряда i=1, n=10 , ,

Рассмотрим формулу среднего значения:

Для нашего временного ряда определим среднее значение

Также для выявления тенденций помимо среднего значения представляет интерес и то, насколько наблюдения разбросаны относительно среднего. Среднеквадратическое отклонение показывает меру отклонения наблюдений относительно среднего.

Формула расчета среднеквадратического отклонение для выборки следующая:

Разложим формулу на составные части и рассчитаем среднеквадратическое отклонение в Excel на примере нашего временного ряда.

1. Рассчитаем среднее значение для этого воспользуемся формулой Excel =СРЗНАЧ(B11:K11)

= СРЗНАЧ(ссылка на диапазон) = 100/10=10

2. Определим отклонение каждого значения ряда относительно среднего

для первой недели = 6-10=-4

для второй недели = 10-10=0

для третей = 7-1=-3 и т.д.

3. Для каждого значения ряда определим квадрат разницы отклонения значений ряда относительно среднего

для первой недели = (-4)^2=16

для второй недели = 0^2=0

для третей = (-3)^2=9 и т.д.

4. Рассчитаем сумму квадратов отклонений значений относительно среднего с помощью формулы =СУММ(ссылка на диапазон (ссылка на диапазон с )

=16+0+9+4+16+16+4+9+0+16=90

5. , для этого сумму квадратов отклонений значений относительно среднего разделим на количество значений минус единица (Сумма((Xi-Xср)^2))/(n-1)

= 90/(10-1)=10

6. Среднеквадратическое отклонение равно = корень(10)=3,2

Итак, в 6 шагов мы разложили сложную математическую формулу, надеюсь вам удалось разобраться со всеми частями формулы и вы сможете самостоятельно разобраться в других формулах.

Рассмотрим еще один показатель, который в будущем нам понадобятся – дисперсия.

Показатели вариации признака (среднее линейное отклонение, дисперсия простая и взвешенная), среднее квадратическое отклонение

Средняя величина не раскрывает строения совокупности, она не показывает, как располагаются около нее варианты осредняемого признака. Исследование вариации в статистике дает возможность оценить степень воздействия на признак других варьирующих признаков.

Вариация — это различие в значениях какого-либо признака у различных единиц совокупности в один и тот же период времени. Вариация существует в пространстве — это колеблемость значений признака по отдельным территориям и во времени — изменение значений признака в различные периоды времени.

Исследование вариации помогает познать сущность изучаемого явления.

Для измерения вариации признака в совокупности применяют ряд обобщающих показателей:

размах вариации;

коэффициент осцилляции;

среднее линейное отклонение;

средний квадрат отклонений (дисперсия);

среднее квадратическое отклонение;

коэффициент вариации.

где     R — размах вариации;

х —  значение признака;

Показатель вариации учитывает крайние значения признака, которые сильно могут отличаться от всех других единиц, поэтому иногда пользуются показателем осцилляции:

где K — коэффициент осцилляции;

 R — размах вариации;

        — средняя арифметическая этого ряда.

Среднее линейное отклонение представляет среднюю арифметическую из абсолютных значений отклонений отдельных вариаций (значений признака) от их средней арифметической (знаки отклонений не учитываются). Среднее линейное отклонение может быть простым и взвешенным и измеряется в тех же единицах, что и величина признака. Вычисление среднего линейного отклонения производится по формулам:

1. для несгруппированных данных:

где— среднее линейное отклонение;

   x — значениe признака;

        — среднее значение признака;

  n — численность признаков.

2. если данные наблюдения представлены в виде дискретного ряда распределения с частотами, тогда:

Дисперсия — это средняя арифметическая квадратов отклонений каждого значения признака от общей средней величины. исперсия еще называется средним квадратом отклонений и обозначается (сигма квадрат). В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:

реднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается (сигма):

Среднее квадратическое отклонение — это обобщающая характеристика абсолютных размеров вариации признака в совокупности и выражается в тех же единицах измерения, что и сам признак (в метрах, тоннах, гектарах и т. д.). Вычислению среднего квадратического отклонения предшествует расчет дисперсии. Среднее квадратическое отклонение показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения.

Для осуществления такого рода сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим используют коэффициент вариации.

Коэффициент вариации — это отношение среднего квадратического отклонения к средней арифметической:

%.

В отличие от среднего квадратического отклонения коэффициент вариации является относительной величиной, что используется при сравнении вариаций любых совокупностей.

И чем больше его величина (V), тем больше разброс значений признака вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна средняя.

Совокупность считается количественно однородной, если коэффициент вариации не превышает 33%.

Дисперсия выборки

Дисперсия выборки (выборочная дисперсия, sample variance) характеризует разброс значений в массиве относительно среднего.

Все 3 формулы математически эквивалентны.

Из первой формулы видно, что дисперсия выборки это сумма квадратов отклонений каждого значения в массиве от среднего, деленная на размер выборки минус 1.

В MS EXCEL 2007 и более ранних версиях для вычисления дисперсии выборки используется функция ДИСП() , англ. название VAR, т.е. VARiance. С версии MS EXCEL 2010 рекомендуется использовать ее аналог ДИСП.В() , англ. название VARS, т.е. Sample VARiance. Кроме того, начиная с версии MS EXCEL 2010 присутствует функция ДИСП.Г(), англ. название VARP, т.е. Population VARiance, которая вычисляет дисперсию для генеральной совокупности. Все отличие сводится к знаменателю: вместо n-1 как у ДИСП.В() , у ДИСП.Г() в знаменателе просто n. До MS EXCEL 2010 для вычисления дисперсии генеральной совокупности использовалась функция ДИСПР() .

Дисперсию выборки можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера ) =КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1) =(СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/ (СЧЁТ(Выборка)-1) – обычная формула =СУММ((Выборка -СРЗНАЧ(Выборка))^2)/ (СЧЁТ(Выборка)-1 ) – формула массива

Дисперсия выборки равна 0, только в том случае, если все значения равны между собой и, соответственно, равны среднему значению. Обычно, чем больше величина дисперсии, тем больше разброс значений в массиве.

Дисперсия выборки является точечной оценкой дисперсии распределения случайной величины, из которой была сделана выборка. О построении доверительных интервалов при оценке дисперсии можно прочитать в статье Доверительный интервал для оценки дисперсии в MS EXCEL.

Стандартное отклонение выборки

Стандартное отклонение выборки — это мера того, насколько широко разбросаны значения в выборке относительно их среднего.

По определению, стандартное отклонение равно квадратному корню из дисперсии:

Стандартное отклонение не учитывает величину значений в выборке, а только степень рассеивания значений вокруг их среднего. Чтобы проиллюстрировать это приведем пример.

Вычислим стандартное отклонение для 2-х выборок: (1; 5; 9) и (1001; 1005; 1009). В обоих случаях, s=4. Очевидно, что отношение величины стандартного отклонения к значениям массива у выборок существенно отличается. Для таких случаев используется Коэффициент вариации (Coefficient of Variation, CV) — отношение Стандартного отклонения к среднему арифметическому, выраженного в процентах.

В MS EXCEL 2007 и более ранних версиях для вычисления Стандартного отклонения выборки используется функция =СТАНДОТКЛОН() , англ. название STDEV, т.е. STandard DEViation. С версии MS EXCEL 2010 рекомендуется использовать ее аналог =СТАНДОТКЛОН.В() , англ. название STDEV.S, т.е. Sample STandard DEViation.

Кроме того, начиная с версии MS EXCEL 2010 присутствует функция СТАНДОТКЛОН.Г() , англ. название STDEV.P, т.е. Population STandard DEViation, которая вычисляет стандартное отклонение для генеральной совокупности. Все отличие сводится к знаменателю: вместо n-1 как у СТАНДОТКЛОН.В() , у СТАНДОТКЛОН.Г() в знаменателе просто n.

Стандартное отклонение можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера ) =КОРЕНЬ(КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1)) =КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/(СЧЁТ(Выборка)-1))

Коэффициент вариации

Значение стандартного отклонения зависит от масштаба самих данных, что не позволяет сравнивать вариабельность разных выборках. Чтобы устранить влияние масштаба, необходимо рассчитать коэффициент вариации по формуле:

По нему можно сравнивать однородность явлений даже с разным масштабом данных. В статистике принято, что, если значение коэффициента вариации менее 33%, то совокупность считается однородной, если больше 33%, то – неоднородной. В реальности, если коэффициент вариации превышает 33%, то специально ничего делать по этому поводу не нужно. Это информация для общего представления. В общем коэффициент вариации используют для оценки относительного разброса данных в выборке.

СТАНДОТКЛОНА (функция СТАНДОТКЛОНА)

​ были рассчитаны стандартное​«Число»​ координаты были занесены​​ отдельная функция –​​ до 255 полей,​

Описание

​ любую свободную ячейку​ отдельно функции для​ (50% / 33%).​Прежде чем включить в​ доходность актива близка​ доходность и различный​

Синтаксис

​ который содержит по​

​ ссылку на массив.​ нажмите клавишу F2,​

​ ЛОЖЬ, в ссылке.​​ выборке. Стандартное отклонение​ коэффициента вариации менее​ отклонение и среднее​. Из раскрывшегося списка​ в поле окна​СРЗНАЧ​ в которых могут​ на листе, которая​ вычисления этого показателя,​ Это означает, что​

Замечания

​ инвестиционный портфель дополнительный​ к 0, коэффициент​ уровень риска. К​ крайней мере один​И ещё одна​ а затем —​Аргументы, содержащие значение ИСТИНА,​ — это мера​ 33%, то совокупность​

​ арифметическое. Но можно​ вариантов выбираем​

​ аргументов, жмем на​. Вычислим её значение​ содержаться, как конкретные​ удобна вам для​ но имеются формулы​ акции компании А​ актив, финансовый аналитик​

​ вариации может получиться​ примеру, у одного​ заголовок столбца и​ функция.​ клавишу ВВОД. При​ интерпретируются как 1.​

​ того, насколько широко​ чисел однородная. В​ поступить и несколько​«Процентный»​ кнопку​ на конкретном примере.​ числа, так и​

​ того, чтобы выводить​ для расчета стандартного​ имеют лучшее соотношение​ должен обосновать свое​

​ большим. Причем показатель​ актива высокая ожидаемая​ по крайней мере​ДСТАНДОТКЛ (база_данных; поле;​ необходимости измените ширину​ Аргументы, содержащие текст​

​ разбросаны точки данных​ обратном случае её​

​ по-иному, не рассчитывая​. После этих действий​«OK»​

Пример

​Выделяем на листе ячейку​ ссылки на ячейки​ в неё результаты​ отклонения и среднего​ риск / доходность.​ решение. Один из​ значительно меняется при​ доходность, а у​ одну ячейку под​ критерий)​ столбцов, чтобы видеть​ или значение ЛОЖЬ,​ относительно их среднего.​

Для чего вы используете дисперсию?

Сама по себе дисперсия имеет ряд применений. С чисто статистической точки зрения это хороший способ обозначить, насколько разрознен набор данных. Инвесторы используют дисперсию для оценки риска данной инвестиции.

Например, взяв стоимость акции за определенный период времени и вычислив ее дисперсию, вы получите хорошее представление о ее волатильности в прошлом. Если предположить, что прошлое предсказывает будущее, это будет означать, что что-то с низкой дисперсией более безопасно и предсказуемо.

Вы также можете сравнить отклонения чего-либо в разные периоды времени. Это может помочь обнаружить, когда другой скрытый фактор на что-то влияет, изменяя его дисперсию.

Дисперсия также сильно связана с другой статистикой, известной как стандартное отклонение. Помните, что значения, используемые для расчета дисперсии, возведены в квадрат. Это означает, что отклонение не выражается в той же единице исходного значения. Стандартное отклонение требует извлечения квадратного корня из дисперсии, чтобы вернуть значение в исходную единицу. Таким образом, если данные были в килограммах, стандартное отклонение тоже.

Расчет среднеквадратичного (стандартного) отклонения

Формулы вычисления стандартного отклонения

Где:
σ — стандартное отклонение,
xi — величина отдельного значения выборки,
μ — среднее арифметическое выборки,
n — размер выборки.
Эта формула применяется, когда анализируются все значения выборки.

Где:
S — стандартное отклонение,
n — размер выборки,
xi — величина отдельного значения выборки,
xср — среднее арифметическое выборки.
Эта формула применяется, когда присутствует очень большой размер выборки, поэтому на анализ обычно берётся только её часть.
Единственная разница с предыдущей формулой: “n — 1” вместо “n”, и обозначение «xср» вместо «μ».

Разница между формулами S и σ («n» и «n–1»)

Состоит в том, что мы анализируем — всю выборку или только её часть:

  • только её часть – используется формула S (с «n–1»),
  • полностью все данные – используется формула σ (с «n»).

Как рассчитать стандартное отклонение?

Пример 1 (с σ)

Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.

День 1 День 2 День 3 День 4
Пред.Б 15 26 15 24

Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:

Применяем эти шаги:

1. Найти среднее арифметическое выборки:

μ = (15 + 26 + 15+ 24) / 4 = 20

2. От каждого значения выборки отнять среднее арифметическое:

x1 — μ = 15 — 20 = -5

x2 — μ = 26 — 20 = 6

x3 — μ = 15 — 20 = -5

x4 — μ = 24 — 20 = 4

3. Каждую полученную разницу возвести в квадрат:

(x1 — μ)² = (-5)² = 25

(x2 — μ)² = 6² = 36

(x3 — μ)² = (-5)² = 25

(x4 — μ)² = 4² = 16

4. Сделать сумму полученных значений:

Σ (xi — μ)² = 25 + 36+ 25+ 16 = 102

5. Поделить на размер выборки (т.е. на n):

(Σ (xi — μ)²)/n = 102 / 4 = 25,5

6. Найти квадратный корень:

√((Σ (xi — μ)²)/n) = √ 25,5 ≈ 5,0498

Пример 2 (с S)

Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.

У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.

Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.

Яблоня 1 Яблоня 2 Яблоня 3 Яблоня 4 Яблоня 5 Яблоня 6
9 2 5 4 12 7

Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:

Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.

Применяем практически те же шаги:

1. Найти среднее арифметическое выборки:

Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5

2. От каждого значения выборки отнять среднее арифметическое:

X1 – Xср = 9 – 6,5 = 2,5

X2 – Xср = 2 – 6,5 = –4,5

X3 – Xср = 5 – 6,5 = –1,5

X4 – Xср = 4 – 6,5 = –2,5

X5 – Xср = 12 – 6,5 = 5,5

X6 – Xср = 7 – 6,5 = 0,5

3. Каждую полученную разницу возвести в квадрат:

(X1 – Xср)² = (2,5)² = 6,25

(X2 – Xср)² = (–4,5)² = 20,25

(X3 – Xср)² = (–1,5)² = 2,25

(X4 – Xср)² = (–2,5)² = 6,25

(X5 – Xср)² = 5,5² = 30,25

(X6 – Xср)² = 0,5² = 0,25

4. Сделать сумму полученных значений:

Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5

5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):

(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1

6. Найти квадратный корень:

S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193

Гость форума
От: admin

Эта тема закрыта для публикации ответов.